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Fig. (1). A hierarchy of structure representation: constitution, 3D structure, molecular surfaces.
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Abstract: After the identification of a biological target, drug design is to analyze the relationships
between the structure of potential ligands and their biological activity. A hierarchy of structure
representation is presented here considering either the constitution of a molecule, its 3D structure, or the
molecular surface. At each level, a variety of physicochemical effects can be accounted for. Furthermore,
the special requirements of learning algorithm, such as neural networks, are taken into consideration.
Application to problems from combinatorial chemistry, lead identification, high-throughput screening,
and prediction of ADME-Tox properties are given.
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1. INTRODUCTION

Orally administered drugs will always be limited to
relatively small molecules. This is largely dictated by the
requirement for intestinal absorption. Thus, sooner or later,
the development of a new drug will require analysis of the
relationships between molecular structure and biological
property. Combinatorial chemistry and high-throughput
screening generate a huge bulk of data that has to be
analyzed by automatic learning and data mining methods in

order to extract knowledge that can be directed to a more
focused synthesis of new lead structures and to the
optimization of such lead compounds. On a wider level,
molecular structures have to be analyzed also to predict their
physical and chemical properties to evaluate ADME-Tox
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properties, and thus such as solubility, intestinal
absorption,and metabolism already in the early stages of
drug development (see article by Lombardo et al. in this
issue). The relationships between the molecular structure and
biological activity are too complex to be calculated from
first principles. Therefore, resort has to be taken to automatic
learning by algorithms, such as statistical or pattern
recognition methods or neural networks. These methods
establish a relationship between an object and its properties
by being presented with a series of training data gained from

experiments. Establishment of a structure-property
relationship critically hinges on the representation of
molecular structures. Chemists have developed a variety of
methods for representing and communicating structure
information. The most widely used, international language
is a structure diagram; it is still the method of choice when
representing chemical reactions. For a more in-depth
analysis, three-dimensional molecular models are built,
either by mechanical molecular model kits, or, increasingly,
by computer modeling. A variety of representations is
available, from framework, through ball and stick, to
spacefilling models. An even more refined analysis of
molecules, particularly when studying biological activity,
has to consider molecular surfaces (see Figure 1).
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Fig. (2). The generation of a 3D molecular model from a chemical graph.

Whatever the level of approximation, it is clear that at
each level a variety of physicochemical properties, such as
electron distribution, polarizability, or hydrogen bonding,
have to be considered.

All these various representations of chemical structures
have to be translated into a form amenable to computer
manipulation. In the following, we will present various
techniques for encoding these different forms that the
chemists use for structure representation, from the
constitution of a molecule, through 3D structures to
molecular surfaces. These different encoding methods have
been developed for the different requirements made by the
intended applications. Furthermore, the size of the datasets
under consideration strongly influences which coding
method can be applied. Datasets of hundreds of thousands or
millions of structures have to rely on rather rapid encoding
procedures in order to be handled in a reasonable amount of
time.

2. CONSTITUTION, 3D STRUCTURE, MOLECULAR
SURFACES

2.1. Constitution

It has become common usage to represent and store
chemical structure information as connection tables (CT). A
connection table provides lists of the atoms and of the bonds
in a molecule. Thus, a connection table reflects the
constitution of a molecule. In effect, it reproduces one
valence bond structure of a molecule. Such a representation
has also been called a topological representation as it shows
the relationships (bonds) between the atoms of a molecule.
Quite often, connection tables are called 2D representations
because they should reflect the 2D structure diagram.
However, it should be kept in mind that a CT carries no
genuine two-dimensional information. A CT gives the
molecular graph, with atoms being the nodes and bonds
being the edges. Thus, a variety of problems in processing
chemical structure information can be operated with methods
from graph theory.

However, software has been developed that allows the
construction of a 2D structure diagram from a CT. On top of
that, we will see in the next section (2.2) that even a 3D
molecular model can be constructed from the information
contained in a CT.

The important point is that much information on
chemical compounds is contained in databases with the
chemical structures coded as connection tables. Typically,
pharmaceutical companies have in-house databases with
several hundred thousands to sometimes more than a million
chemical structures stored as CT. This opens the door to a

wide range of structure coding methods and thus also to a
variety of information processing and chemical data analysis
applications.

All structure coding methods and applications reported in
this paper only need a connection table as input. Section 2.2
shows how a 3D structure can be obtained from a CT and,
building on that, molecular surface properties can be
calculated as shown in Section 2.3. All the methods for the
calculation of physicochemical effects presented in Chapter 3
also need only the connection table of a molecule as input.

2.2. 3D Structures

Presently, about 250,000 experimentally obtained 3D
structures from X-ray crystallography are stored in the
Cambridge Structural Database (CSD) of the Cambridge
Crystallographic Data Center [1]. Large as this number
might seem on first sight, it is minute in comparison to the
more than 25 million known organic compounds and the
many orders of magnitudes larger number of conceivable
organic molecules. Thus, automatic 3D structure generators
are needed to fill the gap between experimentally known 3D
structures and the many more molecules of interest in drug
design, particularly, the large number of compounds studied
in combinatorial chemistry.

Organic molecules have rather clearly defined
construction principles. The prevalent atoms, C, N, O, H, S,
P, F, Cl, Br, I, are bound together in molecules with bond
lengths of very limited variability and bond angles that
attain standard values. Any changes in bond angles, such as
those inflicted in ring systems, can be achieved only by an
increase in energy introducing strain. The larger the
deviations from the standard values in bond angles, the
higher the strain energy. Nevertheless, bond angles can be
distorted by up to 30°, particularly so in polycyclic systems.
On the other hand, rotations around bonds can usually be
achieved quite easily making a multitude of conformations
attainable within a narrow energy window.

The construction principles of organic molecules have
been implemented in a rule and data based approach to
generate a 3D model of an organic molecule from
information on the constitution, the set of atoms and bonds,
only (see Figure 2) [2-4].

This system CORINA (COoRdINAtes) is quite general,
automatically building a 3D model of any organic and many
organometallic molecules from the constitutional
information, from the information stored in a connection
table. Table 1 shows the results obtained in the conversion
of the public database (see article by Tetko in this issue) of
the National Cancer Institute (NCI) [5].
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Fig. (3). Multiple conformations obtained with ROTATE for the HIV-1 protease inhibitor VX-478 (a) and comparison of one of these
conformations with the receptor-bound conformation (b).

Table 1. Conversion of the NCI Database into 3D Structures
by CORINA

number of compounds structures converted CPU timea

249,081 (100%) 247,821 (99.5%) 2:40 h (0.04 s/mol)
a
 on a Linux workstation, Intel Pentium III, 600 MHz.

CORINA generates a single low energy conformation of
a molecule. It has already been said that molecules with
open chain portions can attain many low energy
conformations. The receptor bound conformation of a ligand
neither must be the conformation with lowest energy from
quantum mechanical calculations (in the gas phase) nor the
one obtained from X-ray crystallography (in the solid state).
Thus, the treatment of conformational flexibility is presently
in the center of much attention in drug design. We have
built a system, ROTATE, that preferentially generates
multiple conformations giving preferences to those
conformations observed in X-ray structures and - as
established in an independent study [6] - in receptor bound

states [7]. This is achieved by using a library of torsional
angle patterns derived from a statistical analysis of the CSD
file. Figure 3 shows conformations obtained for the HIV-1
protease inhibitor VX-478 and compares one of those
conformations with the receptor bound conformation.

2.3. Molecular Surfaces

Once a 3D structure of a molecule is available, the
surface of a molecule can be generated. Various types of
surfaces, such as the van der Waals-surface or the solvent
accessible surface, have been defined. In drug design, such
surfaces that are obtained by moving a probe sphere with a
specific radius (e.g., that of a water molecule) across a
molecule have found most wide-spread use.

The generation of a molecular surface is a prerequisite for
the calculation of molecular surface properties (vide infra). It
has to be emphasized that molecules interact with each other
through molecular surfaces and that any detailed
understanding of the interaction of a ligand with its
biological receptor has to take account of molecular surfaces
and their properties.

2.4. Molecular Fields

Molecules will exert influences on other molecules,
which reach even beyond the envelope of a molecular
surface. A molecule generates different types of fields, such
as an electrostatic field, a hydrophobic field, a lipophilicity
field, or a polarizability field, that reach out into space and
fall off with different distance dependences.

In fact, a description of a molecule, which is quite
widely used in drug design, is a Comparative Molecular
Field Analysis (CoMFA, see article by Migliavacca in this
issue). In this approach, a molecule is put into a cubic box
and a molecular field is calculated for the points in this box
that are outside of the molecule. A Partial Least Squares
(PLS) analysis is then performed to reduce the high number
of molecular field values to a manageable number.

3. PHYSICOCHEMICAL EFFECTS

A detailed view into the electronic structure and various
physicochemical properties of a molecule can be obtained by

quantum mechanical calculations at various levels of
sophistication. However, many applications in drug design
ask for the processing of large datasets of hundreds of
thousands, or millions of structures. For such problems,
quantum mechanical calculations are unfeasible because they
require large computation times.

We have therefore developed simple empirical methods
for the estimation of fundamental physicochemical effects,
such as charge distribution, inductive, resonance,
polarizability, or steric effect. Most of these methods only
consider the constitution of a molecule in order to allow the
rapid processing of large datasets of molecules.

3.1. Charge Distribution

The electronic structure of a molecule has profound
influences on many properties. A rather simple, nevertheless
quite useful and still wide-spread picture assigns the valence
electron distribution to the individual atoms of a molecule
arriving at partially charged atoms. A simple empirical
model has been developed [8] that is quite general and has
such short computation times to allow the processing of



792    Mini Reviews in Medicinal Chemistry, 2003, Vol. 3, No. 8 Johann Gasteiger

large datasets of millions of structures. (cf. Table 2 vide
infra).

The method builds on the concept of electronegativity as
defined by Mulliken on the basis of ionization potentials,
IP, and electron affinities, EA (see eq 1).

χiv =
1
2

(IPiv + EAiv)
(eq 1)

In specific, an electronegativity value is assigned to each
orbital of an atom in a particular hybridization state.
Furthermore, the electronegativity of an orbital,χ iv, is
considered as depending on the partial charge of the
considered atom, i. For this dependence, a polynomial of
degree two is taken (eq 2).

χiv  = a + bqi + cqi
2

(eq 2)

On formation of bonds between different orbitals, their
electronegativities equilibrate but they do so only partially
because of changes in orbital electronegativities on
incorporation of atoms into molecules. A simple iterative
procedure has been developed for Partial Equalization of
Orbital Electronegativities (PEOE). The PEOE procedure can
be applied to σ-bonded systems.

Conjugated �-systems need additional precautions since
�-electrons are quite movable and can be delocalized over
more than two atoms. For such systems, first the charge
distribution in the σ-bonded skeleton is calculated. Then,
the �-electron distribution adjusts to the partial charges in
the σ-skeleton by a modified Hückel Molecular Orbital
Treatment. The partial charges on the atoms are then
obtained from the σ- and the �-charges.

The charges calculated by the PEOE method and its
extension to conjugated systems have been correlated with a
variety of physical and chemical data thus showing their
physicochemical significance. As an example, the dipole
moment is taken as a measure of the quality of the calculated
values (Figure 4) [9].

Fig. (4). Comparison of experimental dipole moments and those
calculated from partial charges.

3.2. Polarizability Effect

Polarizability is a dominant factor in the stabilization of
charges in molecules introduced by protonation, or
deprotonation, or by hydrogen bonding. An additivity

scheme can be used to estimate mean molecular
polarizability. In order to account for distance dependence of
the polarizability effect, a simple damping model was used
when considering the contribution of each atom (eq 3) [10].

αeff,j =Σ
i
α i.0.5(n

ij
-1)

(eq 3)

In equation 3 the effective polarizability αeff,j of atom j is
obtained by the sum of the atomic contributions α i of each
atom i in a molecule only to an extent that accounts for the
number of bonds, nij, between atoms i and j.

The chemical significance of the effective polarizability
values has been shown through correlations with quantitative
data on chemical reactions, in particular, with proton
affinities [10] and gas phase acidities. Intentionally, gas
phase data were studied in order to analyze the inherent
physicochemical effects of molecules, uncorrupted by the
influence of solvents.

3.3. Additional Physicochemical Effects

Electronegativity is the inherent potential of an atom to
attract electrons. This potential of an atom has to be
modified when an atom is embedded in a molecular
environment. Concomitant with the values of partial
charges, the PEOE method also provides values of residual
electronegativity for each orbital of an atom according to eq
2. These values of residual electronegativitiy can be taken as
quantitative measures of the inductive effect as shown
through correlation of reactivity data, in particular, those
measured for gas phase reactions [11].

The methods for the calculation of charge distribution,
polarizability, inductive and resonance effect, hydrogen
bonding properties, as well as some additional descriptors
have been collected in the program package PETRA
(Parameter Estimation for the Treatment of Reactivity
Applications), which is also accessible on the web [12].
Table 2 gives results for the calculation of all
physicochemical properties implemented in PETRA for
some medium-sized databases.

Table 2. Calculation of Physicochemical Properties
Implemented in PETRA for Some Medium-Sized
Databases

dataset number of
compounds

CPU timea rejected
compounds

Acros catalog 13,412 0:32 h (0.14 s/mol) 20 (0.1%)

Maybridge database 54,543 2:41 h (0.18 s/mol) 0

NCI database 249,081 17:12 h (0.25 s/mol) 822 (0.3%)
a
 on a Linux workstation, Intel Pentium III, 600 MHz.

4. UNIFORM STRUCTURE REPRESENTATION

4.1. Inductive Learning Methods

The analysis of a dataset of molecular structures by
automatic learning methods, such as pattern recognition
methods or neural networks needs to have all individual
objects, in this case, the molecular structures, to be
represented by the same number of descriptors (see Figure
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Fig. (5). Establishment of a structure-property relationship by an automatic learning method: all structures have to be represented by
the same number of descriptors.

Fig. (6). Self-organizing map obtained from a dataset of 112 dopamine and 60 benzodiazepine agonists.

5). As a consequence, datasets comprising molecules of
different size, i.e., with different numbers of atoms, cannot
directly be investigated by atom-centered properties. Rather,
mathematical transformations have to be invoked to arrive at
a uniform structure representation having the same number
of descriptors for each molecule irrespective of its size.

In the following three sections we will present such
mathematical transformations amenable to the constitution,
the 3D structure, and molecular surfaces. The use of these
structure-encoding schemes will be illustrated with various
problems encountered in drug design.

We analyze such problems usually with various artificial
neural networks [13]. We are strongly convinced that the
analysis of a dataset should be made by a sequence of
unsupervised and supervised learning methods. This is true
so irrespective of whether one employs statistical or pattern
recognition methods or artificial neural networks.
Investigations by unsupervised learning have to find out the
specific structure coding particularly appropriate for the
problem being studied. Only when one has established that
the structure coding chosen can reflect the problem under
investigation, should one switch to a supervised learning
method to establish a quantitative model for predicting the
property of interest. In the following examples we only use
the unsupervised learning technique of a self-organizing
neural network (Kohonen network) [14] to underline the
importance of the various structure encoding schemes to
reflect biological activity.

4.2. Coding the Constitution

The structural diagram can be considered as a
mathematical graph; graph theory has therefore played a
major role in the computer handling of structure
information. In order to transform the information inherent
in a structure diagram into a uniform fixed-length
representation, an autocorrelation function was used (eq 4).

A(d) = Σ
N

Σ
j= i+1 i=1

δij (d)pj pj

N-1

(eq 4)

A value for the autocorrelation function A, at a certain
topological distance (number of bonds), d, is calculated by
summation over all products of a certain property, p, of
atoms i and j having the required distance, d.

A range of properties, such as partial atomic charges,
measures of the inductive, resonance, or polarizability effect
calculated by the program package PETRA (see section 3),
were used for autocorrelation. With seven such properties, p,
and seven topological distances, d = 2...8, each molecule
was represented by a 49-dimensional vector. It could be
shown that such a representation can distinguish between
dopamine and benzodiazepine agonists (Figure 6) [15].

The separation of the two types of agonists can clearly be
seen. The separation was even maintained after projection of
this 49-dimensional space into two dimensions by a
Kohonen neural network. Of even more importance is the
fact that dopamine and benzodiazepine agonists could still
be distinguished when contained in a dataset of more than
8,000 compounds of a chemical supplier catalog. These two
types of compounds were found in limited and separated
regions of a Kohonen map [15].

Thus, this study showed where benzodiazepine or
dopamine agonists have to be sought and in which region of
chemical space no such activity is to be anticipated. This
methodology is used in industry for the comparison of large
inhouse compound collections. It can also be used for the
definition of similarity and diversity of combinatorial
libraries [16].

4.3. Coding the 3D Structure

With a 3D structure accessible for practically any organic
molecule (see section 2), the problem is then, how to encode
the 3D structure under the restriction of having to come up
with a fixed number of variables, independent of the number
of atoms in a molecule. Clearly, again, autocorrelation of
atomic properties as given by eq 2 now using genuine
spatial distances could be used. However, we were seeking
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Fig. (7). Clustering of 25 steroids binding to the corticosteroid binding globulin receptor in a Kohonen network.

Fig. (8). Self-organizing maps obtained from a dataset of 5,513 hydantoins investigated by a HTS. Assay with the molecules encoded
by autocorrelation of the hydrogen bonding potential.

for structure representations that offer the possibility of
regaining the 3D structure of a molecular code.

Building on equations used for obtaining the 3D
structure of a molecule from electron diffraction experiments,
the encoding procedure embodied in eq 5 was developed
[17].

g(r) = Σ
N

Σ
j=i+1 i=1

Ai Aj e-B(r-r  )ij
2N-1

(eq 5)

In this equation, g(r) is the radial distribution function
(RDF), Ai and Aj are atomic properties such as atomic
number, or partial charges, and rij is the distance between the
atoms i and j; N is the number of atoms in the molecule.

This RDF code was mainly used for the simulation of
infrared spectra. However, it could also be demonstrated that
this code shows great promise for correlating structure with
biological activity. Thus, a dataset of 31 steroids showing
different binding affinities for the corticosteroid binding
globulin (CBG) receptor could be clustered into those
having high, intermediate, and low affinity [18] (see Figure
7).

4.4. Coding of Molecular Surface Properties

Molecules interact with each other at molecular surfaces.
This is particularly true for the interaction of a ligand

binding to its receptor. The investigation of molecular
surfaces, the coding of surface properties, is therefore of
primary importance.

A rapid access to the molecular electrostatic potential
(MEP) can be gained through the use of the partial atomic
charge values. A unit positive point charge is moved across
the molecular surface and at each point the electrostatic
potential is calculated in a classical manner through
Coulomb's law by calculating the interactions between the
point charge and the partial charges on the various atoms.
Furthermore, simple empirical methods for the calculation of
the hydrogen bonding potential (HBP) and of the
hydrophobicity potential (HPP) have been developed.

Autocorrelation can also be used to encode surface
properties. Equation 2 is now modified such that the
properties, p, are sampled on a molecular surface; for the
distance parameter, d, all distances within a certain range,
e.g., between 3 and 4 Å, are collected in one autocorrelation
coefficient.

In a study, results from a high-throughput screening
experiment were used to develop a filter that could separate
hits from non-hits. Data were obtained from an assay
investigating 5,513 hydantoins obtained from a library built
from a set of amino acids, aldehydes, and isocyanates. This
data set contained 185 hits. Six different structure-encoding
schemes were investigated. Encoding of the structures by
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Fig. (9). Suite of programs for deriving a hierarchy of structure coding methods (see text).

Daylight fingerprints of length 256, 572, or 1024 hits
proved to be totally inadequate for separating the hits of the
assay from the non-hits. Then, three different molecular
surface properties, the electrostatic potential, the hydrogen
bonding potential, and the hydrophobicity potential were
encoded by autocorrelation. The best results were obtained
when the molecules were represented by autocorrelation of
the hydrogen bonding potential (Figure 8).

Two thirds of the molecules were used for training a
Kohonen network. This network was converted into a filter
that assigned 66 (96%) of the 67 hits of the test dataset to
active compounds and 1,619 (92%) of non-hits to the non-
active compounds. Based on these results a more focused
library could be synthesized.

5. SUMMARY

Approaches to the encoding of molecular structures have
been developed that allow the investigation of datasets of
diverse molecules by learning methods. These structure
representations form a hierarchy of increasing sophistication.
The methods developed here have been encased in computer
programs that can be invoked in different sequences and set-
ups. Figure 9 shows the various modules and the way they
can be combined.

On the left-hand side, one can see how the geometry of a
molecule can be considered in increasing sophistication.
From the constitution of a molecule as encoded in a
connection table and stored in a database, CORINA [4]
generates a three-dimensional molecular model. This 3D
model then allows SURFACE to calculate molecular
surfaces.

The constitution of a molecule is sufficient for allowing
the calculation of the physicochemical effects presented here,

such as charge distribution, effective polarizability, residual
electronegativity, the resonance effect. These methods have
been collected in the program package PETRA [12].

The values of the physicochemical effects calculated with
PETRA can be transformed by autocorrelation, either on the
level of the constitution to give an encoding of a molecule
by topological autocorrelation, or on the level of the 3D
structure of a molecule to give an encoding by 3D
autocorrelation. Alternative to autocorrelation, an encoding
of the physicochemical values obtained with PETRA and
accounting for the 3D molecular structure can be performed
by the MORSE code [18] or by radial distribution functions
with the program ARC [17].

Molecular surface properties, such as the molecular
electrostatic potential (MEP), hydrogen bonding potential
(HBP), or the hydrophobicity potential (HPP) can be
transformed by autocorrelation with the program
SURFACE.

The level of structure representation chosen will largely
be dictated by the size of the dataset to be investigated.
Representations of the constitution will be applied to
datasets comprising millions of structures, whereas
representations of molecular surface properties can still be
chosen for datasets comprising 100,000 and more structures.
Even with large datasets these methods are rapid enough to
be performed on small workstations with computation times
of a few hours. Consideration of conformational flexibility
is presently limited to smaller sets of structures.
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